Skip to main content
Log in

Effects of cognitive load on the amount and temporal structure of postural sway variability in stroke survivors

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

This study aimed to investigate the variability in postural sway patterns during quiet standing in stroke survivors. The postural sway was measured in 19 stroke survivors, as well as 19 healthy demographically matched participants, at 3 levels of postural difficulty (rigid surface with closed and open eyes, and foam surface with closed eyes), and 3 levels of cognitive difficulty (without a cognitive task, easy and difficult cognitive tasks). Both linear analyses (the amount of postural sway variability, including the standard deviation of the COP velocity in both the anteroposterior (AP) and mediolateral (ML) directions), as well as non-linear analyses [the temporal structure of the COP variability, including % Recurrence, % Determinism, Shannon Entropy, Trend and the maximum diagonal line (D max)] were employed. The results revealed that the amount of variability of the postural sway of stroke survivors was significantly greater than that of healthy participants, along both the ML and AP directions, with the highest obtained during standing on foam with closed eyes. All measures of the temporal structure of the COP variability were significantly greater in stroke survivors, as compared to the control group, along the ML direction, but not along the AP direction. The cognitive error was significantly higher during difficult cognitive tasks, although it was neither affected by postural difficulty nor by group. The different results obtained for the amount and temporal structure of the COP variability in the AP and ML directions shed light on the intricate mechanisms employed by the CNS in post-stroke balance control, and suggest that effective rehabilitative and therapeutic strategies should be patient-specific, taking both the environment/surface as well as the specific protocols into consideration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Baratto L, Morasso PG, Re C, Spada G (2002) A new look at posturographic analysis in the clinical context: sway-density versus other parameterization techniques. Mot Control 6:246–270

    Article  Google Scholar 

  • Beauchet O, Dubost V, Aminian K, Gonthier R, Kressig RW (2005) Dual-task-related gait changes in the elderly: does the type of cognitive task matter? J Mot Behav 37:259–264

    CAS  PubMed  Google Scholar 

  • Bensoussan L, Viton JM, Schieppati M, Collado H, Milhe de Bovis V, Mesure S, Delarque A (2007) Changes in postural control in hemiplegic patients after stroke performing a dual task. Arch Phys Med Rehabil 88:1009–1015. https://doi.org/10.1016/j.apmr.2007.05.009

    Article  PubMed  Google Scholar 

  • Blanchard Y, Carey S, Coffey J, Cohen A, Harris T, Michlik S, Pellecchia GL (2005) The influence of concurrent cognitive tasks on postural sway in children. Pediatr Phys Ther 17:189–193

    Article  PubMed  Google Scholar 

  • Brown LA, Sleik RJ, Winder TR (2002) Attentional demands for static postural control after stroke. Arch Phys Med Rehabil 83:1732–1735. https://doi.org/10.1053/apmr.2002.36400

    Article  PubMed  Google Scholar 

  • Cavanaugh JT, Guskiewicz KM, Stergiou N (2005) A nonlinear dynamic approach for evaluating postural control. Sports Med 35:935–950

    Article  PubMed  Google Scholar 

  • Collins JJ, De Luca CJ (1995) Upright, correlated random walks: A statistical-biomechanics approach to the human postural control system. Chaos 5:57–63. https://doi.org/10.1063/1.166086

    Article  PubMed  Google Scholar 

  • Dault MC, Yardley L, Frank JS (2003) Does articulation contribute to modifications of postural control during dual-task paradigms? Brain Res Cogn Brain Res 16:434–440

    Article  PubMed  Google Scholar 

  • de Haart M, Geurts AC, Huidekoper SC, Fasotti L, van Limbeek J (2004) Recovery of standing balance in postacute stroke patients: a rehabilitation cohort study. Arch Phys Med Rehabil 85:886–895

    Article  PubMed  Google Scholar 

  • Deutsch KM, Newell KM (2005) Noise, variability, and the development of children’s perceptual-motor skills. Dev Rev 25:155–180

    Article  Google Scholar 

  • Donker SF, Roerdink M, Greven AJ, Beek PJ (2007) Regularity of center-of-pressure trajectories depends on the amount of attention invested in postural control. Exp Brain Res 181:1–11

    Article  PubMed  PubMed Central  Google Scholar 

  • Doyle TL, Newton RU, Burnett AF (2005) Reliability of traditional and fractal dimension measures of quiet stance center of pressure in young, healthy people. Arch Phys Med Rehabil 86:2034–2040

    Article  PubMed  Google Scholar 

  • Duarte M, Sternad D (2008) Complexity of human postural control in young and older adults during prolonged standing. Exp Brain Res 191:265–276. https://doi.org/10.1007/s00221-008-1521-7

    Article  PubMed  Google Scholar 

  • Field A (2009) Discovering statistics using SPSS. Sage Publications, London

    Google Scholar 

  • Geurts AC, de Haart M, van Nes IJ, Duysens J (2005) A review of standing balance recovery from stroke. Gait Posture 22:267–281. https://doi.org/10.1016/j.gaitpost.2004.10.002

    Article  PubMed  Google Scholar 

  • Ghomashchi H, Esteki A, Nasrabadi AM, Sprott JC, BahrPeyma F (2011) Dynamic patterns of postural fluctuations during quiet standing: a recurrence quantification approach. Int J Bifurc Chaos 21:1163–1172

    Article  Google Scholar 

  • Godefroy O, Fickl A, Roussel M et al (2011) Is the Montreal Cognitive Assessment superior to the Mini-Mental State Examination to detect poststroke cognitive impairment? A study with neuropsychological evaluation. Stroke 42:1712–1716. https://doi.org/10.1161/strokeaha.110.606277

    Article  PubMed  Google Scholar 

  • Goldberger AL (1997) Fractal variability versus pathologic periodicity: complexity loss and stereotypy in disease. Perspect Biol Med 40:543–561

    Article  CAS  PubMed  Google Scholar 

  • Huisinga JM, Yentes JM, Filipi ML, Stergiou N (2012) Postural control strategy during standing is altered in patients with multiple sclerosis. Neurosci Lett 524:124–128

    Article  CAS  PubMed  Google Scholar 

  • Ihlen EA, Skjæret N, Vereijken B (2013) The influence of center-of-mass movements on the variation in the structure of human postural sway. J Biomech 46:484–490

    Article  PubMed  Google Scholar 

  • Kahneman D (1973) Attention and effort. Prentice-Hall, Englewood-Cliffs

    Google Scholar 

  • Kennel MB, Brown R, Abarbanel HD (1992) Determining embedding dimension for phase-space reconstruction using a geometrical construction. Phys Rev A 45:3403

    Article  CAS  PubMed  Google Scholar 

  • Laufer Y, Dickstein R, Resnik S, Marcovitz E (2000) Weight-bearing shifts of hemiparetic and healthy adults upon stepping on stairs of various heights. Clin Rehabil 14:125–129

    Article  CAS  PubMed  Google Scholar 

  • Lezak MD (2004) Neuropsychological assessment. Oxford University Press, Oxford

    Google Scholar 

  • Lindenberger U, Marsiske M, Baltes PB (2000) Memorizing while walking: increase in dual-task costs from young adulthood to old age. Psychol Aging 15:417

    Article  CAS  PubMed  Google Scholar 

  • Lipsitz LA (2002) Dynamics of stability: the physiologic basis of functional health and frailty. J Gerontol A Biol Sci Med Sci 57:B115-125

    Article  Google Scholar 

  • Marchese R, Bove M, Abbruzzese G (2003) Effect of cognitive and motor tasks on postural stability in Parkinson’s disease: a posturographic study. Mov Disord 18:652–658

    Article  PubMed  Google Scholar 

  • Marigold DS, Eng JJ (2006) The relationship of asymmetric weight-bearing with postural sway and visual reliance in stroke. Gait Posture 23:249–255. https://doi.org/10.1016/j.gaitpost.2005.03.001

    Article  PubMed  PubMed Central  Google Scholar 

  • Mazaheri M, Negahban H, Salavati M, Sanjari MA, Parnianpour M (2010a) Reliability of recurrence quantification analysis measures of the center of pressure during standing in individuals with musculoskeletal disorders. Med Eng Phys 32:808–812. https://doi.org/10.1016/j.medengphy.2010.04.019

    Article  PubMed  Google Scholar 

  • Mazaheri M, Salavati M, Negahban H, Sanjari MA, Parnianpour M (2010b) Postural sway in low back pain: effects of dual tasks. Gait Posture 31:116–121. https://doi.org/10.1016/j.gaitpost.2009.09.009

    Article  PubMed  Google Scholar 

  • Megrot F, Bardy B, Dietrich G (2002) Dimensionality and the dynamics of human unstable equilibrium. J Mot Behav 34:323–328. https://doi.org/10.1080/00222890209601950

    Article  PubMed  Google Scholar 

  • Mehdizadeh H, Taghizadeh G, Ghomashchi H et al (2015) The effects of a short-term memory task on postural control of stroke patients. Top Stroke Rehabil 22:335–341. https://doi.org/10.1179/1074935714z.0000000039

    Article  PubMed  Google Scholar 

  • Moghadam M, Ashayeri H, Salavati M, Sarafzadeh J, Taghipoor KD, Saeedi A, Salehi R (2011) Reliability of center of pressure measures of postural stability in healthy older adults: effects of postural task difficulty and cognitive load. Gait Posture 33:651–655

    Article  PubMed  Google Scholar 

  • Negahban H, Salavati M, Mazaheri M, Sanjari MA, Hadian MR, Parnianpour M (2010) Non-linear dynamical features of center of pressure extracted by recurrence quantification analysis in people with unilateral anterior cruciate ligament injury. Gait Posture 31:450–455. https://doi.org/10.1016/j.gaitpost.2010.01.020

    Article  PubMed  Google Scholar 

  • Negahban H, Sanjari MA, Mofateh R, Parnianpour M (2013) Nonlinear dynamical structure of sway path during standing in patients with multiple sclerosis and in healthy controls is affected by changes in sensory input and cognitive load. Neurosci Lett 553:126–131

    Article  CAS  PubMed  Google Scholar 

  • Niam S, Cheung W, Sullivan PE, Kent S, Gu X (1999) Balance and physical impairments after stroke. Arch Phys Med Rehabil 80:1227–1233

    Article  CAS  PubMed  Google Scholar 

  • Olivier I, Cuisinier R, Vaugoyeau M, Nougier V, Assaiante C (2007) Dual-task study of cognitive and postural interference in 7-year-olds and adults. Neuroreport 18:817–821

    Article  PubMed  Google Scholar 

  • Paillard T, Noé F (2015) Techniques and methods for testing the postural function in healthy and pathological subjects. BioMed Res Int 2015:891390

    PubMed  PubMed Central  Google Scholar 

  • Pashler H (1994) Dual-task interference in simple tasks: data and theory. Psychol Bull 116:220

    Article  CAS  PubMed  Google Scholar 

  • Perennou DA, Amblard B, Laassel el M, Benaim C, Herisson C, Pelissier J (2002) Understanding the pusher behavior of some stroke patients with spatial deficits: a pilot study. Arch Phys Med Rehabil 83:570–575

    Article  PubMed  Google Scholar 

  • Rankin JK, Woollacott MH, Shumway-Cook A, Brown LA (2000) Cognitive influence on postural stability a neuromuscular analysis in young and older adults. J Gerontol Ser A Biol Sci Med Sci 55:M112–M119

    Article  CAS  Google Scholar 

  • Redfern MS, Jennings JR, Martin C, Furman JM (2001) Attention influences sensory integration for postural control in older adults. Gait Posture 14:211–216

    Article  CAS  PubMed  Google Scholar 

  • Riley MA, Clark S (2003) Recurrence analysis of human postural sway during the sensory organization test. Neurosci Lett 342:45–48

    Article  CAS  PubMed  Google Scholar 

  • Riley MA, Turvey MT (2002) Variability and determinism in motor behavior. J Mot Behav 34:99–125

    Article  PubMed  Google Scholar 

  • Riley MA, Van Orden GC (2005) Tutorials in contemporary nonlinear methods for the behavioral sciences. National Science Foundation, Arlington

    Google Scholar 

  • Riley MA, Balasubramaniam R, Turvey MT (1999) Recurrence quantification analysis of postural fluctuations. Gait Posture 9:65–78

    Article  CAS  PubMed  Google Scholar 

  • Riley MA, Baker AA, Schmit JM (2003) Inverse relation between postural variability and difficulty of a concurrent short-term memory task. Brain Res Bull 62:191–195

    Article  PubMed  Google Scholar 

  • Riley MA, Baker AA, Schmit JM, Weaver E (2005) Effects of visual and auditory short-term memory tasks on the spatiotemporal dynamics and variability of postural sway. J Mot Behav 37:311–324

    Article  CAS  PubMed  Google Scholar 

  • Roerdink M, De Haart M, Daffertshofer A, Donker SF, Geurts AC, Beek PJ (2006) Dynamical structure of center-of-pressure trajectories in patients recovering from stroke. Exp Brain Res 174:256–269. https://doi.org/10.1007/s00221-006-0441-7

    Article  CAS  PubMed  Google Scholar 

  • Schmit JM, Regis DI, Riley MA (2005) Dynamic patterns of postural sway in ballet dancers and track athletes. Exp Brain Res 163:370–378

    Article  PubMed  Google Scholar 

  • Schmit JM, Riley MA, Dalvi A, Sahay A, Shear PK, Shockley KD, Pun RY (2006) Deterministic center of pressure patterns characterize postural instability in Parkinson’s disease. Exp Brain Res 168:357–367

    Article  PubMed  Google Scholar 

  • Shumway-Cook A, Hutchinson S, Kartin D, Woollacott M (2003) Effect of balance training on recovery of stability in children with cerebral palsy. Dev Med Child Neurol 45:591–602

    Article  PubMed  Google Scholar 

  • Stins J, Michielsen M, Roerdink M, Beek P (2009) Sway regularity reflects attentional involvement in postural control: effects of expertise, vision and cognition. Gait Posture 30:106–109

    Article  CAS  PubMed  Google Scholar 

  • Teasdale N, Simoneau M (2001) Attentional demands for postural control: the effects of aging and sensory reintegration. Gait Posture 14:203–210

    Article  CAS  PubMed  Google Scholar 

  • Umphred DA, Lazaro RT, Roller M, Burton G (2013) Neurological rehabilitation. Elsevier Health Sciences, Amsterdam

    Google Scholar 

  • van Emmerik RE, van Wegen EE (2002) On the functional aspects of variability in postural control. Exerc Sport Sci Rev 30:177–183

    Article  PubMed  Google Scholar 

  • Woollacott M, Shumway-Cook A (2002) Attention and the control of posture and gait: a review of an emerging area of research. Gait Posture 16:1–14

    Article  PubMed  Google Scholar 

  • Woollacott M, Shumway-Cook A (2006) Motor control: translating research into clinical practice. Lippincott Williams and Wilkins, Philadelphia

    Google Scholar 

  • Yardley L, Gardner M, Leadbetter A, Lavie N (1999) Effect of articulatory and mental tasks on postural control. Neuroreport 10:215–219

    Article  CAS  PubMed  Google Scholar 

  • Yelnik AP, Lebreton FO, Bonan IV, Colle FM, Meurin FA, Guichard JP, Vicaut E (2002) Perception of verticality after recent cerebral hemispheric stroke. Stroke 33:2247–2253

    Article  PubMed  Google Scholar 

  • Zatsiorsky VM, Duarte M (1999) Instant equilibrium point and its migration in standing tasks: rambling and trembling components of the stabilogram. Mot Control 3:28–38

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by Iran University of Medical Sciences, Tehran, Iran.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ghorban Taghizadeh.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mehdizadeh, H., Khalaf, K., Ghomashchi, H. et al. Effects of cognitive load on the amount and temporal structure of postural sway variability in stroke survivors. Exp Brain Res 236, 285–296 (2018). https://doi.org/10.1007/s00221-017-5126-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-017-5126-x

Keywords

Navigation